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1 Definitions

1.1 Random processes
• A word is a finite string x = (x1, x2, . . . , xn) ∈ Xn.

• A sample path is an infinite sequence x = (x1, x2, x3, x4, . . .) ∈ XN.

• A random process is a probability distribution over sample paths.

• A random process P defines a time-indexed family of random variables,
X1, X2, X3, . . ., whose values at x are the coordinates x1, x2, x3, . . ..

• By the Daniel-Kolmogorov extension theorem, a random process is
uniquely defined by its word probabilities. In other words, if you know
the joint distribution of any finite sub-family Xn, Xn+1, . . . , Xn+k, then
you know the entire distribution.
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1.2 Entropy rates
• The entropy rate of a random process is

lim
n→∞

H(X1, X2, X3, . . . , Xn)

n

when this limit exists.

• By the chain rule (or product rule) of entropy, this is equal to

lim
n→∞

1

n

n−1∑
i=0

H(Xi+1 |X1, X2, . . . , Xi),

which is often easier to compute.
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• Entropy rates are measured in bits per symbol. When the symbols are
emitted regularly (e.g., 1000 symbols per second), this is proportional to
an amount of bits per time unit (e.g., bits per millisecond).

1.3 Markov Chains
• A random process is i.i.d. if

P (Xn+1 |X1, X2, . . . , Xn) = P (Xn+1).

• A random process is a Markov chain if

P (Xn+1 |X1, X2, . . . , Xn) = P (Xn+1 |Xn).

The conditional probabilities P (Xn+1 |Xn) of a Markov chain are called
its transition probabilities.

• A system of transition probabilities is consistent with several different
Markov chains, but if an initial condition is also supplied in the form
of a marginal distribution for X1, the transitional probabilities define a
unique Markov chain.

• AMarkov chain is stationary if all its marginal distributions are identical:

P (X1) = P (X2) = P (X3) = P (X4) = · · ·

• A system of transition probabilities defines a family of Markov chains. If
only one member of this family is stationary, then its marginal distribu-
tions express how much time, on average, the members of this family will
spend in various states. The are the limiting relative visiting times.

• The entropy rate of a stationary Markov chain is the weighted average
of the conditional entropies at each state.
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1.4 Stationary random processes
• A random process is stationary if the probability of a word (x1, x2, . . . , xn)

is independent of where in the sample path we are:

P (X1 = x1, . . . , Xn = xn) = P (X2 = x1, . . . , Xn+1 = xn)

• The nth time-average of a function f : XN → R along the sample path
x = x1, x2, x3, . . . is

Anf(x) =
f(x1, x2, . . .) + f(x2, x3, . . .) + · · ·+ f(xn, xn+1, . . .)

n
.

• The limiting time-average of f along x is

lim
n→∞

Anf(x)

when this limit exist.

• By the first part of the ergodic theorem, the time-averages of a sta-
tionary process always converge (although possibly to ±∞).

• Reversely, there is (by the extension theorem) at most one stationary
process that produces a certain system of limiting time-averages.

• When an ergodic process has convergent time-averages, these limiting
time-averages coincide with the limiting time-averages of one and only
one stationary random process P ∗. We say that P ∗ describes the limit
behavior of P .

• If P ∗ and P are random processes such that

– P ∗ is stationary and ergodic;

– P ∗(B) = 0 implies that P (B) = 0;

then P ∗ describes the limit behavior of P .

1.5 Ergodic random processes
• A set of sample paths set is time-invariant if membership of that set is

decided by the tail of the sample path rather than any initial segment:

(x1, x2, x3, . . .) ∈ B =⇒ (x2, x3, x4, . . .) ∈ B.

• A random process P is ergodic if P (B) = 1 or P (B) = 0 for all time-
invariant sets B.

• By the second part of the ergodic theorem, the limiting time-averages
of an ergodic process are deterministic random variables (if they exist).
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• A non-ergodic process is a (non-trivial) mixture of ergodic processes.

• The probability distribution over possible limit behaviors of such a mixture
is described by a mixture of stationary and ergodic processes.

• In general, limnAnf(X) is a random variable with one value on each
mixture component. The probabilities of these values are given by the
mixture proportions.

1.6 The Shannon-McMillan-Breiman theorem
• A stationary distribution has an entropy rate (possibly +∞).

• On a sample path drawn from a stationary and ergodic distribution, the
average surprisal converges to the entropy rate with probability 1.

• For large enough n, a stationary and ergodic process with an entropy rate
of H has about 2nH typical sequences of length n.

2 Examples
In each of the following examples, spaces have no meaning, but are only included
for readability. When spaces are counted as encodable source symbols, they are
shown as underscores (_).

2.1 An i.i.d. Process
Let X1, X2, X3, . . . be independent and identically distributed random variables.
Then X1, X2, X3, . . . defines a random process which may, for instance, have
samples paths like

I T T T S S T L C T E C_ E F A I R N P E I A I_ S A R H_ F M . . .

This process is stationary and ergodic.
If each variable has an entropy of H, then the entropy rate of the process is

lim
n→∞

H +H + · · ·+H

n
= H.

2.2 Finite Repetition
Suppose we repeatedly pick a letter and print it three times:

LLL EEE HHH QQQ MMM QQQ OOO TTT EEE YYY XXX GGG . . .

This random process is ergodic but not stationary: the probability of encoun-
tering the word AB is 26−2 at positions 3, 6, 9, 12, . . ., but 0 elsewhere.
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The entropy of its nth initial segment is

H(X1, X2, . . . , Xn) = log 26 + 0 + 0 + log 26 + 0 + 0 + · · ·+ log 26 + 0 + 0,

which is sandwiched between the two bounds

log 26

3
n ≤ H(X1, X2, . . . , Xn) ≤ log 26

3
n+

2 log 26

3
.

When didvided by n, both of these bounds converge to 1
3 log 26. This is thus

the entropy rate of the process.
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The limit behavior of the process is described by a stationary process which
is an equal mixture of three components:

• The random process P itself, X1, X2, X3, . . .;

• The time-shifted distribution TP which describes the random process
X2, X3, X4, . . .;

• The doubly time-shifted distribution T 2P which describes the random
process X3, X4, X5, . . ..

The mixture
P ∗ =

1

3
P +

1

3
TP +

1

3
T 2P

is a stationary but not ergodic distribution.

2.3 Random Repetition
We repeatedly pick a letter and print it k ∼ Geometric( 12 ) times:

SSS P MMMMM D HHH K Z T D U C AAA I D TTT Y HHHH . . .

This process is a stationary and ergodic Markov chain. Its transition probabil-
ities are

P (Xn+1 = xn+1 |Xn = xn) =

{
(1/2) + (1/2)(1/26) (xn+1 = xn)

(1/2)(1/26) (xn+1 6= xn)
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The surprisal value corresponding to a repetition of the preceding letter is

log

(
1

2
+

1

2
· 1
26

)
= log

27

52
= 0.95.

The surprisal value that corresponds to the choice of a new letter is

log

(
1

2
· 1
26

)
= log

1

52
= 5.70.

These two surprisal values are the same in all states. The conditional entropy
of the next letter given the last one is therefore always

H(Xn+1 |X1, X2, . . . , Xn) =
27

52
log

52

27
+ 25 · 1

52
log

52

1
≈ 3.23.

Since this conditional entropy is the same in all states, it is also equal to the
entropy rate of the process.

2.4 Eternal Repetition
Pick a letter at random and print it forever:

GGGGGGGGGGGGGGGGGGGGGGGGGGGGGG . . .

This process is stationary, but not ergodic. It can be defined as the infinite
extension of the word probabilities

P (X1 = x1, . . . , Xn = xn) =

{
1/26 (x1 = x2 = · · · = xn)

0 (otherwise)

When decomposed into an ergodic mixture, this random process has 26 compo-
nents, all of which are deterministic (and therefore stationary and ergodic):

P =
1

26
PA +

1

26
PB +

1

26
PC · · ·+

1

26
PZ.

Since each of these components have an entropy rate of 0, so does P . In fact,
the actual cost of encoding a sample of length n from this process is dlog 26e/n
bits per character.

2.5 Healthy-Sick-Dead
The following transition probabilities define a family of Markov chains:

Healty Sick Dead

.5

.5

.5
.5

1
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We can find the stationary marginal distribution over these three states by
solving the following system of linear equations:

h = 0.5h+ 0.5s

s = 0.5h

d = 0.5s+ d

h+ s+ d = 1

This has the unique solution (h∗, s∗, d∗) = (0, 0, 1). Since this is the only so-
lution, every Markov chain in this family is ergodic, and all of them visit the
three states limiting frequencies (h∗, s∗, d∗) = (0, 0, 1).

In order to compute the entropy rate, we compute the conditional entropy

H(Xn+1 |Xn = Dead) = 0.

This is the only state that will recur in the long run, so the entropy rate of this
process is 1 · 0 = 0.

2.6 The Santa Claus Machine
The following transition probabilities define a family of Markov processes:

A H O

1

.5 .5

1

To find the stationary Markov chain in this family, we solve the equations

a = 0.5h

h = a + o

o = 0.5h

a+ h+ o = 1

This has the unique solution (a∗, h∗, o∗) = ( 14 ,
1
2 ,

1
4 ). All Markov chains in this

family are thus ergodic, and their limiting visiting frequencies are described by
this stationary marginal distribution.

To compute the entropy rate, we note that

H(Xn+1 |Xn = A) = 0

H(Xn+1 |Xn = H) = 1

H(Xn+1 |Xn = O) = 0

Taking the weighted average of these conditional entropies, we get
1

4
· 0 +

1

2
· 1 +

1

4
· 0 =

1

2
.

The entropy rate of this random process is therefore 1/2. This reflects the fact
that we need one bit to encode the choice of A or O every other symbol.
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2.7 The Decision Chain
The following transition probabilities define a family of Markov chains:

True Unknown False
.2 .2

.6

1 1

In order to find the stationary distributions in this family, we solve

t = t+ 0.2u

u = 0.6u

f = 0.2u+ f

t+ u+ f = 1

This problem has infinitely many solutions. They can be parametrized as

(t∗, u∗, f∗) = (p, 0, 1− p),

where p can be chosen freely from the unit interval, p ∈ [0, 1].
Except for the two extreme cases p = 0 and p = 1, none of the Markov chains

in this family are ergodic. A sample path from a Markov chain in this family
can exhibit substantially different limit-behaviors depending on which trapping
set it ends up in.

As it happens, the conditional entropy at both trapping sets is 0. The
entropy rate of every process in this family is therefore 0. Note, however, that
in other cases, the entropy rate might not have reflect actual average surprisals.

2.8 Random Walk
A dust particle starts at X1 = 0 and then takes a unit step, either up or down,
in each time period:

0, 1, 2, 3, 4, 3, 2, 3, 2, 1, 2, 1, 0,−1,−2,−1, 0,−1,−2, . . .

This random process is a Markov chain with a countably infinite number of
states. It is ergodic, but not stationary.
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The system of limiting time-averages defined by this process does not define a
probability distribution. This is because the marginal probability of finding the
dust particle in any fixed set A ⊆ Z goes to zero as n→∞. The only measure
consistent with these visiting frequencies is therefore the all-zero measure that
sets P (A) = 0 for all A. Alhtough this measure is, in a certain sense, the correct
expression of the limiting behavior of this random process, it is not a probability
distribution.

2.9 Exponential Means
Define the random variables X1, X2, X3, . . .:

X1 ∼ Uniform{1, 2}
X2 ∼ Uniform{1, 2, 3, 4}
X3 ∼ Uniform{1, 2, 3, 4, 5, 6, 7, 8}
X4 ∼ Uniform{1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16}
...

...
. . .

This list of random variables defines a random process. A typical sample from
this process is

1, 1, 3, 6, 11, 26, 58, 70, 185, 435, 467, 909, 2804, 5262, . . .

Note that the coordinates X1, X2, X3, . . . of this random process are indepen-
dent, but not identically distributed.
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The process is highly non-stationary. This is apparent from the exponential
growth in the marginal expectations, E[Xn].

The marginal entropies H(Xn) = n grow linearly, so the cumulative entropy
grows roughly quadratically in n:

H(X1, X2, . . . , Xn) = H(X1) +H(X2) + · · ·+H(Xn) ≈ 1

2
n2.
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The entropy rate of this process is therefore

lim
n→∞

n2/2

n
= lim

n→∞

1

2
n = ∞.

This reflects the fact that no fixed amount of bits per symbol will be sufficient
to encode the sequence X1, X2, . . . , Xn for all n.

2.10 Half-Deterministic
The following tree defines a binary random process P :

1

1/2

1/4
1/8

· · ·
· · ·

1/8
· · ·
· · ·

1/4
1/8

· · ·
· · ·

1/8
· · ·
· · ·

1/2 1/2 1/2 · · ·

This random process is stationary, but not ergodic. It can be decomposed into
two stationary and ergodic mixture components:

1. a deterministic branch, P1 = Bernoulli(0), with entropy rate 0;

2. an i.d.d. subtree, P2 = Bernoulli( 12 ), with entropy rate 1.

We then have
P =

1

2
P1 +

1

2
P2.

The entropy rate of P is H = 1
2 . However, the process is not ergodic, and its

entropy rate deviates from the average surprisal on all sample paths. In this
case, the entropy thus has no interpretation in terms of data compression.

2.11 Nested, Paired Parentheses
A process P repeatedly prints k ∼ Geometric( 12 ) opening parentheses and then
immediately closes them again:

( ) ( ( ( ) ) ) ( ( ( ) ) ) ( ( ) ) ( ( ) ) ( ( ( ) ) ) ( ( ) ) . . .

This process is ergodic. It is not stationary. P is also not a Markov chain,
since checking whether all parentheses have been closed may require one to look
arbitrarily far back.
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However, by introducing a hidden “depth” variable that keeps track of the
current level of parenthesis nesting, we can analyze P as a so-called “hidden”
Markov model. This amounts to packing all the memory that P needs in order
to make its next choice into a single variable.

This trick allows us to convert this non-Markovian process into a Markov
chain which transitions between various memory states. In the present case, the
space of hidden memory states and their accessibility relation is given by the
following transition diagram:

(, 1 (, 2 (, 3 (, 4

), 0 ), 1 ), 2 ), 3

· · ·

· · ·

1
2

1
2

1
2

1
2

1
2

1
2

1
2

1
2

1 1 1 1

1

We can also think of the state of this process as a walk up and down in symmetric
triangles (which then have geometrically distributed heights):

0 5 10 15 20 25 30
0
1
2
3

n

xn

According to its definition, P starts deterministically in the bottom left state of
the transition diagram, about to open its first parentheses. Over time, however,
this concentration of probability mass will diffuse out through the state space.
In the long run, the process will visit each state with a frequency given by the
relevant stationary distribution.

This stationary marginal distribution is shown in the following diagram:

1/4 1/8 1/16 1/32

1/4 1/8 1/16 1/32

· · ·

· · ·

1
2

1
2

1
2

1
2

1
2

1
2

1
2

1
2

1 1 1 1

1

In every states in the top row of this diagram, there are two possibilities for the
next symbol, and the conditional entropy is therefore 1 bit. In the bottom row,
there is only one possible next symbol, and the conditional entropy is 0. The
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entropy rate is therefore the weighted average

H = 1 · (1/4 + 1/8 + 1/16 + · · · ) +
0 · (1/4 + 1/8 + 1/16 + · · · )

= 1/2.

The transition diagram with the stationary state probabilities can also be
used to compute the probabilities of words according to P ∗.

For instance, the word “))((” has conditional probability zero at all states
except the third state in the bottom row, (“)”, 2). At this state, the conditional
probability of observing the sequence “))((” is

1 · 1 · 1 · 1
2

=
1

2
.

Since the stationary probability of the state (“)”, 2) is 1/16, it follows that P ∗
assigns probability 1/32 to the event that the word “))((” occurs at some given
point in the sample path.

Note that the monogram “(” is emitted with probability 1 from the bottom
left state, and with probability 1/2 from all states in the top row. Its marginal
probability is therefore

1

4
· 1 +

1

4
· 1
2

+
1

8
· 1
2

+
1

16
· 1
2
· · · =

1

2
.

Perhaps not surprisingly, P ∗ thus assigns probability 1/2 to the event that a
randomly plucked symbol from the sample path x1, x2, x3, . . . is an opening
parenthesis. Unlike the case for P , this is true even for the first symbol, X1.

2.12 The Beta Urn Scheme
Suppose we start with an urn that contains two marbles, one red and one blue.
We then repeatedly draw a marble from the urn and replace it by two marbles
of the same color.

We define a random process X1, X2, X3, . . . by recording the color of the nth
marble we draw as Xn. A typical sample path from this process is then

R B R B R B R R B R B B R R R R B R B B B R R R B . . .

The urn thus grows by one marble per round, and if it acquires a strong bias
towards either red or blue, this bias tends to sustain itself.

However, this self-sustaining property does not entail that the urn will nec-
essarily massively overrepresenting one or the other color. In fact, the limiting
proportion of red marbles in the urn is a random variable which uniformly dis-
tributed over the unit interval:
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The possible limit behaviors of P are therefore described by the flip flipping
processes Pθ = Bernoulli(θ) with fixed coin bias θ ∈ [0, 1]. These processes cor-
respond exactly to the kind of behavior you would get from an infinitely large
urn with a specific proportion of red marbles.

Since Bernoulli processes are i.i.d., they are also stationary and ergodic. Each
one of them defines one possible attractor for P . In fact, P can be decomposed
into an overcountable mixture of Bernoulli processes:

P =

∫
Pθ dθ.

Since each Bernoulli process is stationary, this also proves that P itself is sta-
tionary, although this is by no means obvious.
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